Skip Navigation

Publication Detail

Title: The Effect of Aging on Aerosol Bolus Deposition in the Healthy Adult Lung: A 19-Year Longitudinal Study.

Authors: Darquenne, Chantal; Prisk, G Kim

Published In J Aerosol Med Pulm Drug Deliv, (2020 06)

Abstract: Background: While it is recognized that peripheral lung structure and ventilation heterogeneity change with age, the effects of age on aerosol deposition in the healthy adult lung is largely unknown. Methods: A series of aerosol bolus inhalations were repeatedly performed in four healthy subjects over a period of 19 years (years = 0, 9, 15 and 19). For each series, a bolus of 1 μm particles was inhaled at penetration volumes (Vp) ranging from 200 to 1200 mL. Aerosol bolus deposition (DE), dispersion (H), and mode shift (MS) were calculated along with the rate of increase in these parameters with increasing Vp (slope-DE, slope-H, and slope-MS). Results: Slope-DE significantly increased from 0.040 ± 0.014 (mean ± standard deviation) at year 0 to 0.069 ± 0.007%/mL at year 19 (p = 0.02) with no significant difference in DE at shallow depth (Vp = 200 mL; 14% ± 4% at year 0 vs. 15% ± 7% at year 19, p = 0.25). There was no significant effect of age on either slope-H (0.44 ± 0.05 at year 0 vs. 0.47 ± 0.09 mL/mL at year 19, p = 0.6) or dispersion at shallow depth (192 ± 36 mL at year 0 vs. 220 ± 54 mL at year 19, p = 0.2). Slope-MS became significantly more negative with increasing age (-0.096 ± 0.044 at year 0 vs. -0.171 ± 0.027 mL/mL at year 19, p = 0.001) with no significant difference in MS at shallow depth (12 ± 10 at year 0 vs. 7 ± 15 mL at year 19, p = 0.3). Conclusions: These data suggest that (1) peripheral deposition increases with aging in the healthy lung, likely as a result of increasing closing volume with age; (2) alterations in the mechanical properties of healthy adult lungs with age occur uniformly; and (3) the significant increase in the magnitude of MS-slope with age is likely due to the concomitant increase in peripheral deposition and possible alterations in flow sequencing.

PubMed ID: 31613688 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top