Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).

Authors: Minerali, Eni; Foil, Daniel H; Zorn, Kimberley M; Lane, Thomas R; Ekins, Sean

Published In Mol Pharm, (2020 07 06)

Abstract: Drug-induced liver injury (DILI) is one the most unpredictable adverse reactions to xenobiotics in humans and the leading cause of postmarketing withdrawals of approved drugs. To date, these drugs have been collated by the FDA to form the DILIRank database, which classifies DILI severity and potential. These classifications have been used by various research groups in generating computational predictions for this type of liver injury. Recently, groups from Pfizer and AstraZeneca have collated DILI in vitro data and physicochemical properties for compounds that can be used along with data from the FDA to build machine learning models for DILI. In this study, we have used these data sets, as well as the Biopharmaceutics Drug Disposition Classification System data set, to generate Bayesian machine learning models with our in-house software, Assay Central. The performance of all machine learning models was assessed through both the internal 5-fold cross-validation metrics and prediction accuracy of an external test set of compounds with known hepatotoxicity. The best-performing Bayesian model was based on the DILI-concern category from the DILIRank database with an ROC of 0.814, a sensitivity of 0.741, a specificity of 0.755, and an accuracy of 0.746. A comparison of alternative machine learning algorithms, such as k-nearest neighbors, support vector classification, AdaBoosted decision trees, and deep learning methods, produced similar statistics to those generated with the Bayesian algorithm in Assay Central. This study demonstrates machine learning models grouped in a tool called MegaTox that can be used to predict early-stage clinical compounds, as well as recent FDA-approved drugs, to identify potential DILI.

PubMed ID: 32422053 Exiting the NIEHS site

MeSH Terms: Algorithms; Bayes Theorem; Biopharmaceutics; Chemical and Drug Induced Liver Injury/etiology*; Computer Simulation; Databases, Factual; Databases, Pharmaceutical; Drug Approval; Drug-Related Side Effects and Adverse Reactions; Humans; Liver/drug effects*; Liver/pathology; Machine Learning*; Software

to Top