Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Extra-mitochondrial mouse frataxin and its implications for mouse models of Friedreich's ataxia.

Authors: Weng, Liwei; Laboureur, Laurent; Wang, Qingqing; Guo, Lili; Xu, Peining; Gottlieb, Leah; Lynch, David R; Mesaros, Clementina; Blair, Ian A

Published In Sci Rep, (2020 09 25)

Abstract: Mature frataxin is essential for the assembly of iron-sulfur cluster proteins including a number of mitochondrial enzymes. Reduced levels of mature frataxin (81-20) in human subjects caused by the genetic disease Friedreich's ataxia results in decreased mitochondrial function, neurodegeneration, and cardiomyopathy. Numerous studies of mitochondrial dysfunction have been conducted using mouse models of frataxin deficiency. However, mouse frataxin that is reduced in these models, is assumed to be mature frataxin (78-207) by analogy with human mature frataxin (81-210). Using immunoaffinity purification coupled with liquid chromatography-high resolution tandem mass spectrometry, we have discovered that mature frataxin in mouse heart (77%), brain (86%), and liver (47%) is predominantly a 129-amino acid truncated mature frataxin (79-207) in which the N-terminal lysine residue has been lost. Mature mouse frataxin (78-207) only contributes 7-15% to the total frataxin protein present in mouse tissues. We have also found that truncated mature frataxin (79-207) is present primarily in the cytosol of mouse liver; whereas, frataxin (78-207) is primarily present in the mitochondria. These findings, which provide support for the role of extra-mitochondrial frataxin in the etiology of Friedreich's ataxia, also have important implications for studies of mitochondrial dysfunction conducted in mouse models of frataxin deficiency.

PubMed ID: 32978498 Exiting the NIEHS site

MeSH Terms: Amino Acid Sequence; Animals; Brain/metabolism; Disease Models, Animal*; Friedreich Ataxia/genetics; Friedreich Ataxia/metabolism; Friedreich Ataxia/pathology*; Heart/physiology; Humans; Iron-Binding Proteins/genetics; Iron-Binding Proteins/metabolism*; Liver/metabolism; Mice; Mitochondria/genetics; Mitochondria/metabolism*

to Top