Skip Navigation

Publication Detail

Title: Developmental Toxicology of Metal Mixtures in Drosophila: Unique Properties of Potency and Interactions of Mercury Isoforms.

Authors: Beamish, Catherine R; Love, Tanzy M; Rand, Matthew D

Published In Int J Mol Sci, (2021 Nov 09)

Abstract: Mercury ranks third on the U.S. Agency of Toxic Substances and Disease Registry priority list of hazardous substances, behind only arsenic and lead. We have undertaken uncovering the mechanisms underlying the developmental toxicity of methylmercury (MeHg), inorganic mercury (HgCl2), lead acetate (Pb), and sodium arsenite (As). To probe these differences, we used the Drosophila model, taking advantage of three developmental transitions-pupariation, metamorphosis, and eclosion-to differentiate potentially unique windows of toxicity. We elaborated dose response profiles for each individual metal administered in food and accounted for internal body burden, also extending analyses to evaluate combinatorial metal mixture effects. We observed all four metals producing larval lethality and delayed pupariation, with MeHg being most potent. Compared to other metals, MeHg's potency is caused by a higher body burden with respect to dose. MeHg uniquely caused dose-dependent failure in eclosion that was unexpectedly rescued by titrating in HgCl2. Our results highlight a unique developmental window and toxicokinetic properties where MeHg acts with specificity relative to HgCl2, Pb, and As. These findings will serve to refine future studies aimed at revealing tissue morphogenesis events and cell signaling pathways, potentially conserved in higher organisms, that selectively mediate MeHg toxicity and its antagonism by HgCl2.

PubMed ID: 34830013 Exiting the NIEHS site

MeSH Terms: Animals; Arsenites/toxicity; Drosophila melanogaster/drug effects*; Drosophila melanogaster/growth & development; Humans; Larva/drug effects; Mercury/toxicity*; Metals/toxicity*; Methylmercury Compounds/toxicity*; Organometallic Compounds/toxicity; Protein Isoforms/toxicity; Sodium Compounds/toxicity; Toxicological Phenomena

Back
to Top