Skip Navigation

Publication Detail

Title: Evidence for Layer-Specific Connectional Heterogeneity in the Mouse Auditory Corticocollicular System.

Authors: Yudintsev, Georgiy; Asilador, Alexander R; Sons, Stacy; Vaithiyalingam Chandra Sekaran, Nathiya; Coppinger, Macey; Nair, Kavya; Prasad, Masumi; Xiao, Gang; Ibrahim, Baher A; Shinagawa, Yoshitaka; Llano, Daniel A

Published In J Neurosci, (2021 12 01)

Abstract: The auditory cortex (AC) sends long-range projections to virtually all subcortical auditory structures. One of the largest and most complex of these-the projection between AC and inferior colliculus (IC; the corticocollicular pathway)-originates from layer 5 and deep layer 6. Though previous work has shown that these two corticocollicular projection systems have different physiological properties and network connectivities, their functional organization is poorly understood. Here, using a combination of traditional and viral tracers combined with in vivo imaging in both sexes of the mouse, we observed that layer 5 and layer 6 corticocollicular neurons differ in their areas of origin and termination patterns. Layer 5 corticocollicular neurons are concentrated in primary AC, while layer 6 corticocollicular neurons emanate from broad auditory and limbic areas in the temporal cortex. In addition, layer 5 sends dense projections of both small and large (>1 µm2 area) terminals to all regions of nonlemniscal IC, while layer 6 sends small terminals to the most superficial 50-100 µm of the IC. These findings suggest that layer 5 and 6 corticocollicular projections are optimized to play distinct roles in corticofugal modulation. Layer 5 neurons provide strong, rapid, and unimodal feedback to the nonlemniscal IC, while layer 6 neurons provide heteromodal and limbic modulation diffusely to the nonlemniscal IC. Such organizational diversity in the corticocollicular pathway may help to explain the heterogeneous effects of corticocollicular manipulations and, given similar diversity in corticothalamic pathways, may be a general principle in top-down modulation.SIGNIFICANCE STATEMENT We demonstrate that a major descending system in the brain is actually two systems. That is, the auditory corticocollicular projection, which exerts considerable influence over the midbrain, comprises two projections: one from layer 5 and the other from layer 6. The layer 6 projection is diffusely organized, receives multisensory inputs, and ends in small terminals; while the layer 5 projection is derived from a circumscribed auditory cortical area and ends in large terminals. These data suggest that the varied effects of cortical manipulations on the midbrain may be related to effects on two disparate systems. These findings have broader implications because other descending systems derive from two layers. Therefore, a duplex organization may be a common motif in descending control.

PubMed ID: 34670851 Exiting the NIEHS site

MeSH Terms: Animals; Auditory Cortex/anatomy & histology*; Auditory Pathways/anatomy & histology*; Female; Male; Mice; Mice, Inbred BALB C

Back
to Top