Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Predicting chemical ecotoxicity by learning latent space chemical representations.

Authors: Gao, Feng; Zhang, Wei; Baccarelli, Andrea A; Shen, Yike

Published In Environ Int, (2022 05)

Abstract: In silico prediction of chemical ecotoxicity (HC50) represents an important complement to improve in vivo and in vitro toxicological assessment of manufactured chemicals. Recent application of machine learning models to predict chemical HC50 yields variable prediction performance that depends on effectively learning chemical representations from high-dimension data. To improve HC50 prediction performance, we developed an autoencoder model by learning latent space chemical embeddings. This novel approach achieved state-of-the-art prediction performance of HC50 with R2 of 0.668 ± 0.003 and mean absolute error (MAE) of 0.572 ± 0.001, and outperformed other dimension reduction methods including principal component analysis (PCA) (R2 = 0.601 ± 0.031 and MAE = 0.629 ± 0.005), kernel PCA (R2 = 0.631 ± 0.008 and MAE = 0.625 ± 0.006), and uniform manifold approximation and projection dimensionality reduction (R2 = 0.400 ± 0.008 and MAE = 0.801 ± 0.002). A simple linear layer with chemical embeddings learned from the autoencoder model performed better than random forest (R2 = 0.663 ± 0.007 and MAE = 0.591 ± 0.008), fully connected neural network (R2 = 0.614 ± 0.016 and MAE = 0.610 ± 0.008), least absolute shrinkage and selection operator (R2 = 0.617 ± 0.037 and MAE = 0.619 ± 0.007), and ridge regression (R2 = 0.638 ± 0.007 and MAE = 0.613 ± 0.005) using unlearned raw input features. Our results highlighted the usefulness of learning latent chemical representations, and our autoencoder model provides an alternative approach for robust HC50 prediction.

PubMed ID: 35395577 Exiting the NIEHS site

MeSH Terms: Machine Learning*; Neural Networks, Computer*

to Top