Pre- and postnatal urinary BPA concentrations and childhood neurodevelopment over the first 3 years of life

Joe Braun MSPH, PhD, RN
Acknowledgements

- **Collaborators:**
 - Amy Kalkbrenner
 - Antonia Calafat
 - Chensheng Lu
 - Kim Yolton
 - Kim Dietrich
 - Bruce Lanphear
 - Robert Wright
 - Mara Tellez-Rojo
 - Maritsa Solano
 - David Bellinger
 - Study Staff
 - Participants

- **Funding:**
 - NIEHS
 - EPA
Bisphenol A

- Estrogenic monomer used in the production of polycarbonate plastics and resins
- Concern that prenatal exposure may result in adverse growth and development via endocrine pathways
- Recent expert panels have expressed concern over BPA toxicity
Sources of BPA Exposure

- Canned foods
- Bottles and formula
- Thermal receipts
- Cigarette Filters (Braun 2010)

Ubiquity of BPA has led to nearly universal exposure
Bisphenol A and Neurodevelopment

- Prenatal exposure may result in adverse neurodevelopment
 - Sex steroid mediated processes (Palanza 2008)

- Animal studies show prenatal exposure associated with:
 - Aggression, altered spatial learning
 - Changes in sexually dimorphic behaviors

- Only one human study (Braun et al. 2009)
BPA and Childhood Behavior

- Prenatal BPA exposure was associated with externalizing behaviors in girls at 2 years
 - Early exposures were most important

- Suggests that BPA may disrupt development of sexually dimorphic behaviors

- Limitations
Specific Aims

1. Determine if associations between prenatal BPA exposure and neurodevelopment persist to 3 years of age
 • Examine behavior, mental/psychomotor development, and executive function

2. Examine association between prenatal BPA exposure and cognitive, language, and psychomotor development in Mexico City children
Aim 1: Neurodevelopment at 3 Years

The HOME Study
Data Source: Aim 1

- HOME Study
- Prospective cohort of mothers and their singleton children (n=237)
- Enrolled between 13 and 19 weeks gestation
- Cincinnati metro area
- Recruited 2003-2005
HOME Study Exposures and Outcomes

Prenatal BPA Measures

16W 26W Birth

Covariates

Postnatal Neurobehavior and BPA Measures

1Y: BPA

2Y: BPA

3Y: BPA

3Y: BASC, BRIEF-P, and BSID-II
BPA Exposure

- Spot urine samples collected
 - Prenatal:
 - 16 and 26 weeks
 - Birth
 - Postnatal:
 - 12, 24, and 36 months
 - HPLC-MS/MS

- Creatinine standardized/adjusted
Neurodevelopmental Outcomes

- **BASC-2**
 - Problem and adaptive behaviors:
 - Externalizing, internalizing, and behavioral symptom index

- **BRIEF-P**
 - Parent report of executive function
 - Flexibility, self-control, ability to shift, etc.

- **BSID-II**
 - Structured examination of mental and psychomotor development
BPA Exposure

- Prenatal median: 2.0 µg/L
- Postnatal median: 4.4 µg/L

- Very low correlation between measures
 - $R^2=0$ to 0.3
Aim 2: Pilot Study of BPA and Neurodevelopment in Mexico

The ELEMENT Study
Data Source: Aim 2

- ELEMENT Study
- Ongoing prospective cohort of ~1200 women
- Enrolled ~20 weeks gestation
- Mexico City
- Women were recruited through Mexican Social Security System

- Pilot study of 100 women and their children
ELEMENT Study Exposures and Outcomes

Prenatal BPA Measures

20W

Covariates

Postnatal Neurobehavior

6, 12, and 18 Months: BSID-III
BPA Exposure

- Spot urine samples collected at 20 and 30 weeks gestation
 - Analyzed 20 week samples

- Analyzed with ESI-LC-MS

- Creatinine standardized/adjusted
Neurodevelopmental Outcomes

- BSID-III
 - Structured examination of mental and psychomotor development
 - Global cognition
 - Receptive/express language
 - Gross/fine motor
BPA Exposure in Mexico City at 20 Weeks Gestation

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>25<sup>th</sup></th>
<th>Median</th>
<th>75<sup>th</sup></th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA</td>
<td><LOD</td>
<td><LOD</td>
<td>2.6</td>
<td>6.5</td>
<td>25</td>
</tr>
<tr>
<td>Cr-BPA</td>
<td><LOD</td>
<td><LOD</td>
<td>4.4</td>
<td>20</td>
<td>150</td>
</tr>
</tbody>
</table>

52% (n=52) of women had detectable urinary BPA concentrations ~20 weeks gestation.
Conclusions: Behavior and Executive Function

- Behavior
 - Externalizing and internalizing behaviors
 - Females
 - Early 2nd trimester
 - Persists at 3 years

- Executive function
 - Corroborates behavior result
 - Neuropsychological tests of EF
Conclusions: Mental/psychomotor Development

- BSID Results
 - Conflicting evidence between cohorts

- Differences:
 - Exposure
 - BSID-II vs. BSID-III
 - Small sample in Mexico
Discussion

- Animal literature supports results
 - ↑ Morphine induced locomotion among animals with early exposure (Narita 2007)
 - Increased anxiety (Tian 2010)
 - Changes NMDA and domaninergic systems
 - Sex specific effects of BPA on spatial memory (Bryce 2006, Carr 2003)
Discussion

- BPA may impact sexual differentiation of the brain
 - Importance of sex steroids
Strengths and Limitations

- Neurodevelopmental and exposure data
- Longitudinal follow-up
- Rich set of confounders
- Temporal variability of BPA
- Multiple exposures
- Still early in childhood
- Residual confounding
Future Research

- Continued follow-up of both cohorts

- Enrich Mexico City cohort with:
 - Additional mother-child pairs
 - 3rd trimester sample

- Sexually dimorphic computerized tests
 - VMWM
Conclusions

- BPA exposure may adversely affect childhood behavior
- Role of BPA in cognitive development uncertain
- Research Needs:
 - Comparable animal tests
 - Exposure assessment