

Grant Information: Institution, Principal Investigator(s), Contact Information, Grant Number	University of Massachusetts Project: A Novel Strategy for Arsenic Phytoremediation Project Leaders: <u>Om Parkash Dhankher</u> , <u>Venkataraman Dhandapani</u> , <u>Jason C. White</u> , <u>Baoshan Xing</u> Grant Number: R01ES032686 Funding Period: 2021-2025
Technology	Developing a genetics-based phytoremediation strategy for arsenic uptake, translocation, detoxification, and hyperaccumulation into the fast-growing, high biomass, non-food oilseed crop <i>Crambe abyssinica</i> .
Innovation	Materials: Nanosulfur will be utilized to modulate the bioavailability and phytoextraction of arsenic from soil and to increase the storage capacity via enhanced sulfur assimilation.
	crop <i>Crambe abyssinica</i> to remediate arsenic-contaminated soil.
	Why is this technology/approach different than what is already in the market? We are using a gene pyramiding approach to co-express several genes that control the transport, oxidation state, and binding of As for efficient extraction and hyperaccumulation into above-ground plant tissues of <i>Crambe abyssinica</i> . Phytoremediation is a cost-effective and ecologically friendly alternative to physical remediation methods.
Contaminant and Media	Contaminants: Arsenic Media: Soil, sediment, and maybe water
Expansion Potential	Looking Forward: What other contaminants/media would work for your technology? Toxic metals: Pb, Cd, Hg, Cr Combined Remedy: Would this technology work well with other treatment approaches? Yes, this approach could be combined with biofuels production on contaminated sites.
Sites/Samples	We are using artificially contaminated soils, but will use the real-world samples, like field soils contaminated with As and other toxic metals.

Continued

Technology Readiness Level	TRL 3 — Experimental proof of concept TRL 4 — Technology validated in laboratory
Update of Progress	 We are co-expressing four genes that control the transport, oxidation state, and binding of As for efficient extraction and hyperaccumulation into above-ground plant tissues. All four genes are cloned and transformed into <i>Crambe</i> either single or stacked genes. We have already developed transgenic <i>Crambe</i> plants for several gene constructs. Analysis of double transgenic lines coexpressing arsenate reductase and glutathione biosynthesis pathway gene showed that double transgenic plant had significantly increased arsenate (AsV) tolerance as these plants attained
	almost three-fold higher biomass compared to wild type controls plants. These plants accumulated 2-fold more arsenic in the shoot tissues. Analysis of plants expressing other genes is in progress.
	 Analysis of transgenic plants for other genes is in progress.
	 We have also optimized the nanosulfur concentration on arsenic mobility from soil and subsequent uptake and accumulation in <i>Crambe</i> grown in soil supplemented with both arsenate and nanosulfur.
	 Additionally, for the Diversity Supplement award, we are modulating the expression of arsenate reductases for increasing tolerance and reducing As accumulation in rice for food safety.

Developing a genetics-based strategy for arsenic phytoremediation in Crambe abyssinica, a non-food industrial oilseed crop.