Skip Navigation

Your Environment. Your Health.

Person Details

Superfund Research Program

David L. Sedlak

University of California-Berkeley
Civil and Environmental Engineering
657 Davis Hall
Berkeley, CA 94720-1710
Phone: (510) 643-0256
Fax: (510) 642-7483
Email: sedlak@ce.berkeley.edu

Projects

Research Briefs

Patents

Publications

2016

  • Barazesh JM, Prasse C, Sedlak DL. 2016. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions. Environ Sci Technol 50(18):10143-10152. doi:10.1021/acs.est.6b02232 PMID:27599127 PMCID:PMC5032050
  • Liu H, Bruton TA, Li W, Van Buren J, Doyle FM, Prasse C, Sedlak DL. 2016. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. Environ Sci Technol 50(2):890-898. doi:10.1021/acs.est.5b04815 PMID:26687229
  • Sedlak DL, Sun B, Ma J. 2016. Chemisorption of Perfluorooctanoic Acid on Powdered Activated Carbon Initiated by Persulfate in Aqueous Solution. Environ Sci Technol 50(14):7618-7624. doi:10.1021/acs.est.6b00411 PMID:27336204

2015

2014

  • Liu H, Bruton TA, Doyle FM, Sedlak DL. 2014. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environ Sci Technol 48(17):10330-10336. doi:10.1021/es502056d PMID:25133603 PMCID:PMC4151705

2012

  • Gui M, Smuleac V, Ormsbee LE, Sedlak DL, Bhattacharyya D. 2012. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. Journal of Nanoparticle Research 14:861. doi:10.1007/s11051-012-0861-1
  • Pham AL, Doyle FM, Sedlak DL. 2012. Inhibitory Effect of Dissolved Silica on H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-Based In Situ Chemical Oxidation. Environ Sci Technol 46:1055-1062. doi:10.1021/es203612d PMID:22129132 PMCID:PMC3262894
  • Pham AL, Doyle FM, Sedlak DL. 2012. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Water Res 46(19):6454-6462. doi:10.1016/j.watres.2012.09.020 PMID:23047055 PMCID:PMC3891917
  • Pham AL, Sedlak DL, Doyle FM. 2012. Dissolution of mesoporous silica supports in aqueous solutions: Implications for mesoporous silica-based water treatment processes. Appl Catal B 126:258-264. doi:10.1016/j.apcatb.2012.07.018 PMID:23055573 PMCID:PMC3465675

2011

  • Ela WP, Sedlak DL, Barlaz MA, Henry HF, Muir DG, Swackhamer DL, Weber EJ, Arnold RG, Ferguson PL, Field JA, Furlong ET, Giesy JP, Halden RU, Henry T, Hites RA, Hornbuckle KC, Howard PH, Luthy RG, Meyer AK, Saez AE, vom Saal FS, Vulpe CD, Wiesner MR. 2011. Toward identifying the next generation of superfund and hazardous waste site contaminants. Environ Health Perspect 119(1):6-10. doi:10.1289/ehp.1002497 PMID:21205582 PMCID:PMC3018501
  • Ela WP, Sedlak DL, Barlaz MA, Henry HF, Muir DG, Swackhamer DL, Weber EJ, Arnold RG, Ferguson PL, Field JA, Furlong ET, Giesy JP, Halden RU, Henry T, Hites RA, Hornbuckle KC, Howard PH, Luthy RG, Meyer AK, Saez AE, vom Saal FS, Vulpe CD, Wiesner MR. 2011. Workshop Summary: Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants. http://ehp03.niehs.nih.gov/article/info%3Adoi%2F10.1289%2Fehp.1002497
  • Remucal CK, Sedlak DL. 2011. The Role of Iron Coordination in the Production of Reactive Oxidants from Ferrous Iron Oxidation by Oxygen and Hydrogen Peroxide. In: Aquatic redox chemistry. American Chemical Society, Washington, DC.

2010

  • Pham AL, Sedlak DL, Doyle FM. 2010. Production of Oxidizing Intermediates during Corrosion of Iron: Implications for Remediation of Contaminants from Mineral and Metal Processing. ECS Transactions 28(6):117-127. doi:10.1149/1.3367907

2009

2008

  • Keenan CR, Sedlak DL. 2008. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42(4):1262-1267. doi:10.1021/es7025664
  • Keenan CR, Sedlak DL. 2008. Ligand-enhanced reactive oxidant generation by nanoparticulate zerovalent Iron and oxygen. Environ Sci Technol 42(18):69366941. doi:10.1021/es801438f
  • Lee C, Keenan CR, Sedlak DL. 2008. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ Sci Technol 42(13):4921-6. doi:10.1021/es800317j PMID:18678027
  • Lee C, Kim J, Lee W, Nelson KL, Yoon J, Sedlak DL. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927-33. doi:10.1021/es800408u PMID:18678028
  • Lee C, Sedlak DL. 2008. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ Sci Technol 42(22):8528-8533. PMID:19068843

2003

  • Mitch WA, Sharp JO, Rhodes Trussell R, Valentine RL, Alvarez-Cohen L, Sedlak DL. 2003. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ Eng Sci 20(5):389-404.

Share This Page:

Page Options:

Request Translation Services