COVID-19 Routes of Transmission & Implications for Worker Protection

Lisa M Brosseau, ScD, CIH Professor (retired, University of Illinois at Chicago)

AEROSOL GENERATION

Aerosols can be generated by natural processes:

- Vomit
- Hemorrhage
- Diarrhea (toilet flushing)
- Coughing
- Sneezing
- Talking

Aerosols can be generated by medical procedures:

- Intubation
- Bronchoscopy
- Drug delivery
- Respiratory support

Inhalation can occur at the time and near the point of generation

At time = 0, an aerosol is generated by person A. Person B receives droplet spray and inhales particles. Person C has no exposure.

AEROSOL SETTLING AND DIFFUSION

Inhalation is possible near and further from the point of generation

Inhalation continues to be possible near the source as settling and diffusion take place.

Aerosol transmission (inhalation) is possible further from the source over time.

Infection depends on organism viability and dose (concentration of organisms in aerosol). At time = 1, the aerosol is dispersing, and many larger particles are settling. Person B inhales particles. Person C has no exposure.

AEROSOL DIFFUSION AND SETTLING

Aerosol transmission (inhalation) is possible throughout the space

Infection depends on organism viability and dose (concentration of organisms in aerosol).

Aerosol Transmission

Establish biological plausibility*

- Aerosols are generated at a source
- Organism remains viable in air at environmental conditions along a path
- Receptors are accessible following inhalation or impaction

	Risk Group			
Weight of Evidence	1	2	3	4
9				
8		Influenza	Tuberculosis	
7		Norovirus	SARS	Ebola
6				
5				
4				
3				

Level of concern

Overall weight of evidence = 7 – 8 for COVID-19 Risk group = 3 (like SARS) High level of concern for aerosol transmission Explains rapid transmission from one person to the next Masks and Respirators for COVID-19 Aerosols

Healthcare Workers Have Highest Risk

- Masks as source control on patients
- Airborne infection isolation rooms for suspected cases
- N95 filtering facepiece respirators for healthcare workers
- Respirators with higher levels of protection for patients with severe symptoms and aerosolgenerating procedures

Workers with High Risk Not in Healthcare

• Implement as many source and path controls as possible before using PPE

Workers with Moderate or Low Risk

- Source and path controls
- No PPE

Public

- Stay home!
- No masks or respirators

All Disease Transmission Routes are Possible for COVID-19

Contact	Transfer from infectious source or object to mucous membranes			
Droplet	Large droplets "propelled" onto face and mucous membranes (no inhalation)			
Airborne	Droplet nuclei inhaled ONLY when susceptible person is far from infectious source			
Aerosol	Aerosols inhaled near the source			

Protecting Healthcare Workers

 \bullet

Have healthcare and public health organizations implemented all possible engineering and administrative controls? CDC checklist <u>()</u>

What about elastomeric respirators?

Donations from companies Give every healthcare worker their own respirator

Ask H&S professionals to assist with fit testing

Asking the public to wear surgical masks won't stop transmission

 \bigcirc

What year is this? 1918?

Cloth masks do NOT work!