Skip Navigation

Climate Change and Human Health Literature Portal Climate niches of tick species in the mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change

Climate Change and Human Health Literature Portal

Estrada-Peña A, Venzal JM
2007
Journal of Medical Entomology. 44 (6): 1130-1138

In this study, we used ecological niche factor analysis (ENFA) and principal components analysis (PCA) of climate variables to define the climate niches and areas of potential colonization of six species of ticks in the Mediterranean region: Dermacentor marginatus Sulzer, Rhipicephalus bursa Canestrini & Fanzago, Rhipicephalus turanicus Pomerantsev, Matikashvili & Lototsky, Hyalomma marginatum Koch, Hyalomma excavatum Koch, and Boophilus annulatus (Say). ENFA generated distribution models that varied in accuracy from high to very high (area under the curve [AUC] = 0.87-0.97), with the lowest AUC obtained for B. annulatus. PCA provided an adequate separation of the climate niches of different species in the reduced space of the variables. Climate scenarios and factorial consensus analysis were used to evaluate the geographic impact of climate change (as turnover in habitat suitability) on the niches of the ticks and net variations in habitat availability. The scenario that was most compatible with estimates of future climate in the Mediterranean region (increase in temperature and decrease in rainfall) was predicted to produce a sharp increase in the extent of suitable habitat for R. bursa, R. turanicus, and H. marginatum. This scenario would result in a northward expansion of suitable habitat areas for these three species. The highest impact (highest species turnover) would be recorded at the margin of the current distribution range of the three species. A sensitivity analysis of the ecological response of the ticks to the climate change scenarios showed that the response is statistically different in different regions of the PCA-derived niche. These results outline the need to further investigate the potential of bioclimate models to obtain accurate estimations of tick species turnover under conditions of climate change over wide areas.

Expand Abstract

Resource Description

    Ecosystem Change, Temperature
    • Ecosystem Change, Temperature: Variability
    Ocean/Coastal
    Non-United States
    • Non-United States: Africa, Europe
    Infectious Disease
    • Infectious Disease: Vectorborne Disease
      • Vectorborne Disease: Tick-borne Disease
        • Tick-borne Disease: General Tick-borne Disease
        Tick-borne Disease
      Vectorborne Disease
    Exposure Change Prediction
    Inter-Annual (1-10 years)
    Research Article
    Adaptation
    • Adaptation: Adaptation Co-Benefit/Co-Harm, Early Warning System, Vulnerability Assessment
    Other Climate Change Scenario, Specify
Back
to Top