Skip Navigation

Climate Change and Human Health Literature Portal Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution

Climate Change and Human Health Literature Portal

Gatewood AG, Liebman KA, Gwenaël Vh, Bunikis J, Hamer SA, Cortinas R, Melton F, Cislo P, Kitron U, Tsao J, Barbour AG, Fish D, Diuk-Wasser MA
2009
Applied and Environmental Microbiology. 75 (8): 2476-2483

The blacklegged tick, Ixodes scapularis, is of significant public health importance as a vector of Borrelia burgdorferi, the agent of Lyme borreliosis. The timing of seasonal activity of each immature I. scapularis life stage relative to the next is critical for the maintenance of B. burgdorferi because larvae must feed after an infected nymph to efficiently acquire the infection from reservoir hosts. Recent studies have shown that some strains of B. burgdorferi do not persist in the primary reservoir host for more than a few weeks, thereby shortening the window of opportunity between nymphal and larval feeding that sustains their enzootic maintenance. We tested the hypothesis that climate is predictive of geographic variation in the seasonal activity of I. scapularis, which in turn differentially influences the distribution of B. burgdorferi genotypes within the geographic range of I. scapularis. We analyzed the relationships between climate, seasonal activity of I. scapularis, and B. burgdorferi genotype frequency in 30 geographically diverse sites in the northeastern and midwestern United States. We found that the magnitude of the difference between summer and winter daily temperature maximums was positively correlated with the degree of seasonal synchrony of the two immature stages of I. scapularis. Genotyping revealed an enrichment of 16S-23S rRNA intergenic spacer restriction fragment length polymorphism sequence type 1 strains relative to others at sites with lower seasonal synchrony. We conclude that climate-associated variability in the timing of I. scapularis host seeking contributes to geographic heterogeneities in the frequencies of B. burgdorferi genotypes, with potential consequences for Lyme borreliosis morbidity. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Expand Abstract

Resource Description

    Ecosystem Change, Meteorological Factor, Temperature
    • Ecosystem Change, Meteorological Factor, Temperature: Variability
    General Geographic Feature
    United States
    Infectious Disease
    • Infectious Disease: Vectorborne Disease
      • Vectorborne Disease: Tick-borne Disease
        • Tick-borne Disease: Lyme Disease
        Tick-borne Disease
      Vectorborne Disease
    Exposure Change Prediction
    Inter-Annual (1-10 years)
    Research Article
    Adaptation
    • Adaptation: Adaptation Co-Benefit/Co-Harm, Early Warning System, Vulnerability Assessment
Back
to Top