Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Powerful gene set analysis in GWAS with the Generalized Berk-Jones statistic.

Authors: Sun, Ryan; Hui, Shirley; Bader, Gary D; Lin, Xihong; Kraft, Peter

Published In PLoS Genet, (2019 03)

Abstract: A common complementary strategy in Genome-Wide Association Studies (GWAS) is to perform Gene Set Analysis (GSA), which tests for the association between one phenotype of interest and an entire set of Single Nucleotide Polymorphisms (SNPs) residing in selected genes. While there exist many tools for performing GSA, popular methods often include a number of ad-hoc steps that are difficult to justify statistically, provide complicated interpretations based on permutation inference, and demonstrate poor operating characteristics. Additionally, the lack of gold standard gene set lists can produce misleading results and create difficulties in comparing analyses even across the same phenotype. We introduce the Generalized Berk-Jones (GBJ) statistic for GSA, a permutation-free parametric framework that offers asymptotic power guarantees in certain set-based testing settings. To adjust for confounding introduced by different gene set lists, we further develop a GBJ step-down inference technique that can discriminate between gene sets driven to significance by single genes and those demonstrating group-level effects. We compare GBJ to popular alternatives through simulation and re-analysis of summary statistics from a large breast cancer GWAS, and we show how GBJ can increase power by incorporating information from multiple signals in the same gene. In addition, we illustrate how breast cancer pathway analysis can be confounded by the frequency of FGFR2 in pathway lists. Our approach is further validated on two other datasets of summary statistics generated from GWAS of height and schizophrenia.

PubMed ID: 30875371 Exiting the NIEHS site

MeSH Terms: Body Height/genetics; Breast Neoplasms/genetics; Chromosome Mapping/statistics & numerical data; Computational Biology/methods; Computer Simulation; Databases, Genetic; Female; Gene Regulatory Networks; Genome-Wide Association Study/statistics & numerical data*; Humans; Models, Genetic; Models, Statistical; Polymorphism, Single Nucleotide; Receptor, Fibroblast Growth Factor, Type 2/genetics; Schizophrenia/genetics

to Top