Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Ah receptor signals cross-talk with multiple developmental pathways.

Authors: Puga, Alvaro; Tomlinson, Craig R; Xia, Ying

Published In Biochem Pharmacol, (2005 Jan 15)

Abstract: For many years, the Ah receptor (AHR) has been a favorite of toxicologists and molecular biologists studying the connections between genes and the changes in the control of gene expression resulting from environmental exposures. Much of the attention given to the Ah receptor has focused on the nature of its ligands, many of which are known or suspected carcinogens, and on the role that its best studied regulatory product, the CYP1A1 enzyme, plays in toxic responses and carcinogen activation. This understandable bias has resulted in a disproportionate amount of Ah receptor research being directed at toxicological or adaptive end points. In recent times, it has become evident that Ah receptor functions are also involved in molecular cascades that lead to inhibition of proliferation, promotion of differentiation, or apoptosis, with an important bearing in development. Developmental and toxicological AHR functions may not always be related. The ancestral AHR protein in invertebrates directs the developmental fate of a few specific neurons and does not bind xenobiotic ligands. The mammalian AHR maintains normal liver function in the absence of exogenous ligands and, when activated by dioxin, cross-talks with morphogenetic and developmental signals. Toxic end points, such as the induction of cleft palate by dioxin in mice embryos, might be at the crossroads of these signals and provide important clues as to the developmental role of the AHR.

PubMed ID: 15627472 Exiting the NIEHS site

MeSH Terms: Animals; Gene Expression Regulation, Developmental/drug effects; Gene Expression Regulation, Developmental/physiology; Humans; Receptor Cross-Talk/physiology*; Receptors, Aryl Hydrocarbon/physiology*; Signal Transduction/drug effects; Signal Transduction/physiology*

Back
to Top