Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Arora, Manish
Institute Receiving Award Icahn School Of Medicine At Mount Sinai
Location New York, NY
Grant Number R35ES030435
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Jun 2020 to 31 Mar 2028
DESCRIPTION (provided by applicant): Project Summary According to the developmental origins of health and disease hypothesis, many disorders originate via environmental exposures in fetal and early postnatal life. Such early life environmental exposures can alter the developmental trajectory by disrupting the homeostasis of one or more systems, and in doing so produce identifiable biochemical signatures characteristic of the disease process or outcome. However, the lack of a conceptual framework as well as technological barriers have hampered research in this area; consequently, many disorders are not detected until overt clinical signs appear in adulthood, at which point it is no longer possible to meaningfully alter the course of development or disease. We are proposing a new paradigm that will overcome these barriers to detect disease years before current clinical and biochemical tests. By doing so we will be able to predict, and even prevent and treat diseases decades before any clinical signs. Central to our proposal is an underappreciated characteristic of many human physiologic processes—they commonly exhibit highly temporally resolved biochemical rhythms (or cycles) when at homeostasis. The idea of biochemical rhythms in itself is not revolutionary; sleep cycles, body temperature, cortisol rhythms, and menstrual cycles are all examples of the rhythmic nature of human physiology operating at various intervals. Medical testing, however, seldom considers rhythmicity. We propose to develop not just a novel technology that analyzes dynamic rhythmicity of key biochemical pathways during fetal development and childhood to accurately detect marked and sustained deviations from homeostasis that would be prognostic of later-life disease onset, but also a new framework for understanding development not solely as a linear trajectory but as interconnected rhythmic processes embedded within the growth trajectory.
Science Code(s)/Area of Science(s) Primary: 61 - Neurodevelopmental
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer Yuxia Cui
to Top