Skip Navigation

Publication Detail

Title: DNA repair and replication in human fibroblasts treated with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene .

Authors: Kaufmann, W K; Boyer, J C; Smith, B A; Cordeiro-Stone, M

Published In Biochim Biophys Acta, (1985 Feb 20)

Abstract: DNA repair and replication were examined in diploid human fibroblasts after treatment with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Unscheduled DNA synthesis exhibited a linear response to BPDE-I concentrations up to 1.5 microM and a saturation plateau after higher concentrations. Maximal unscheduled DNA synthesis was observed in the first hour after treatment with synthesis diminishing progressively thereafter. Half-maximal unscheduled DNA synthesis was seen within 4-6 h after treatment with 0.7 microM BPDE-I. DNA replication was inhibited by BPDE-I in a dose- and time-dependent fashion. The mechanisms of this inhibition were characterized by velocity sedimentation of pulse-labeled nascent DNA in alkaline sucrose gradients. Very low concentrations of BPDE-I (0.03 and 0.07 microM) were found to inhibit replicon initiation by up to 50% within 30-60 min after treatment. Recovery of initiation following these low concentrations was evident within 3 h after treatment. Higher concentrations of carcinogen inhibited DNA synthesis in active replicons. This effect was manifested by a reduction in incorporation of precursor into replication intermediates of greater than 1 X 10(7) Da with the concurrent production of abnormally small nascent DNA. When viewed 45 min after treatment with 0.17 microM BPDE-I the combination of these two effects partially masked the inhibition of replicon initiation. However, even after treatment with 0.33 microM BPDE-I an effect on initiation was evident. These results reveal a pattern of response to BPDE-I that is quite similar to that produced by 254 nm radiation.

PubMed ID: 3970929 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top