Skip Navigation

Publication Detail

Title: Sensory irritation response in rats: modeling, analysis and validation.

Authors: Yokley, Karen A; Tran, Hien; Schlosser, Paul M

Published In Bull Math Biol, (2008 Feb)

Abstract: Inhaled gases can cause respiratory depression by irritating (stimulating) nerves in the nasal cavity. Respiratory depression, in turn, decreases the rate of delivery of those gases to the stimulated nerves, potentially leading to a complex feedback response. In order to better understand how the nervous system responds to such chemicals, a mathematical model is created to describe how the presence of irritants affects respiration in the rat. The ordinary differential equation model describes the dosimetry of these reactive gases in the respiratory tract, with particular focus on the physiology of the upper respiratory tract, and on the neurological control of respiration rate due to signaling from the irritant-responsive nerves in the nasal cavity. The ventilation equation is altered to account for an apparent change in dynamics between the initial ventilation decrease and the recovery to steady state as seen in formaldehyde exposure data. Further, the model is evaluated and improved through optimization of particular parameters to describe formaldehyde-induced respiratory response data and through sensitivity analysis. The model predicts the formaldehyde data well, and hence the model is thought to be a reasonable description of the physiological system of sensory irritation. The model is also expected to translate well to other irritants.

PubMed ID: 17914657 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top