Skip Navigation

Publication Detail

Title: Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children.

Authors: Islam, T; Berhane, K; McConnell, R; Gauderman, W J; Avol, E; Peters, J M; Gilliland, F D

Published In Thorax, (2009 Mar)

Abstract: Because asthma has been associated with exercise and ozone exposure, an association likely mediated by oxidative stress, we hypothesised that glutathione-S-transferase (GST)P1, GSTM1, exercise and ozone exposure have interrelated effects on the pathogenesis of asthma.Associations of the well characterised null variant of GSTM1 and four single nucleotide polymorphisms (SNPs) that characterised common variation in the GSTP1 locus with new onset asthma in a cohort of 1610 school children were examined. Children's exercise and ozone exposure were classified using participation in team sports and community annual average ozone levels, respectively.A two SNP model involving putatively functional variants (rs6591255, rs1695 (Ile105Va)) best captured the association between GSTP1 and asthma. The risk of asthma was lower for those with the Val allele of Ile105Val (hazard ratio (HR) 0.60, 95% CI 0.4 to 0.8) and higher for the variant allele of rs6591255 (HR 1.40, 95% CI 1.1 to 1.9). The risk of asthma increased with level of exercise among ile(105) homozygotes but not among those with at least one val(105) allele (interaction p value = 0.02). The risk was highest among ile(105) homozygotes who participated in >or=3 sports in the high ozone communities (HR 6.15, 95% CI 2.2 to 7.4). GSTM1 null was independently associated with an increased risk of asthma and showed little variation with air pollution or GSTP1 genotype. These results were consistent in two independent fourth grade cohorts recruited in 1993 and 1996.Children who inherit a val(105) variant allele may be protected from the increased risk of asthma associated with exercise, especially in high ozone communities. GSTM1 null genotype was associated with an increased risk of asthma.

PubMed ID: 18988661 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top