Skip Navigation

Publication Detail

Title: T-wave alternans, air pollution and traffic in high-risk subjects.

Authors: Zanobetti, Antonella; Stone, Peter H; Speizer, Frank E; Schwartz, Joel D; Coull, Brent A; Suh, Helen H; Nearing, Bruce D; Mittleman, Murray A; Verrier, Richard L; Gold, Diane R

Published In Am J Cardiol, (2009 Sep 01)

Abstract: Particulate pollution has been linked to risk for cardiac death; possible mechanisms include pollution-related increases in cardiac electrical instability. T-wave alternans (TWA) is a marker of cardiac electrical instability measured as differences in the magnitude between adjacent T waves. In a repeated-measures study of 48 patients aged 43 to 75 years, associations of ambient and home indoor particulate pollution, including black carbon (BC) and reports of traffic exposure, with changes in 0.5-hourly maximum TWA (TWA-MAX), measured by 24-hour Holter electrocardiographic monitoring, were investigated. Each patient was observed up to 4 times within 1 year after percutaneous intervention for myocardial infarction, acute coronary syndromes without infarction, or stable coronary artery disease, for a total of 5,830 0.5-hour observations. Diary data for each 0.5-hour period defined whether a patient was home or not home, or in traffic. Increases in TWA-MAX were independently associated with the previous 2-hour mean ambient BC (2.1%, 95% confidence interval 0.9% to 3.3%) and with being in traffic in the previous 2 hours (6.1%, 95% confidence interval 3.4% to 8.8%). When subjects were home, indoor home BC effects were largest and most precise; when subjects were away from home, ambient central site BC effects were strongest. Increases in pollution increased the odds of TWA-MAX > or =75th percentile (odds ratio 1.4, 95% confidence interval 1.2 to 1.6 for a 1 microg/m(3) increase in 6-hour mean BC). In conclusion, after hospitalization for coronary artery disease, being in traffic and short-term ambient or indoor BC exposure increased TWA, a marker of cardiac electrical instability.

PubMed ID: 19699342 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top