Skip Navigation

Publication Detail

Title: Airborne particulate metals in the New York City subway: a pilot study to assess the potential for health impacts.

Authors: Grass, David S; Ross, James M; Family, Farnosh; Barbour, Jonathan; James Simpson, H; Coulibaly, Drissa; Hernandez, Jennifer; Chen, Yingdi; Slavkovich, Vesna; Li, Yongliang; Graziano, Joseph; Santella, Regina M; Brandt-Rauf, Paul; Chillrud, Steven N

Published In Environ Res, (2010 Jan)

Abstract: A prior study in New York City observed that airborne concentrations of three metals found in steel - iron, manganese, and chromium - are more than 100 times higher in the subway system than in aboveground air. To investigate the potential for health effects of exposure at these levels, we conducted a pilot study of subway workers comparing personal exposures to steel dust with biomarkers of metal exposure, oxidative stress, and DNA damage in blood and urine samples. Workers wore a personal air sampler operating at 4L/m for one to three work shifts with blood and urine samples collected at the end of the final shift. We found that PM(2.5) exposures varied among subway workers on the basis of job title and job activity. The subway workers' mean time-weighted PM(2.5) exposure was 52 microg/m3, with a median of 27 microg/m3, and a range of 6-469 microg/m3. The observed concentrations of PM(2.5), iron, manganese, and chromium fell well below occupational standards. Biomarker concentrations among the 39 subway workers were compared with a group of 11 bus drivers, and a group of 25 suburban office workers. Concentrations of DNA-protein crosslinks and chromium in plasma were significantly higher in subway workers than in bus drivers, but no significant difference was observed for these biomarkers between subway workers and office workers. Urinary isoprostane concentrations were significantly correlated with the number of years working in the subway system, and were detected at higher, though not significantly higher, concentrations in subway workers than in bus drivers or office workers. At the group level, there was no consistent pattern of biomarker concentrations among subway workers significantly exceeding those of the bus drivers and office workers. At the individual level, steel dust exposure was not correlated with any of the biomarkers measured.

PubMed ID: 19926083 Exiting the NIEHS site

MeSH Terms: Adult; Air Pollutants, Occupational/analysis*; Air Pollutants, Occupational/blood; Air Pollutants, Occupational/toxicity; Air Pollutants, Occupational/urine; DNA Damage; Dust; Environmental Monitoring*; Humans; Inhalation Exposure/analysis*; Metals, Heavy/analysis*; Metals, Heavy/blood; Metals, Heavy/toxicity; Metals, Heavy/urine; Microscopy, Electron, Scanning; Middle Aged; New York City; Oxidative Stress/drug effects; Particle Size; Particulate Matter/analysis*; Particulate Matter/blood; Particulate Matter/toxicity; Particulate Matter/urine; Pilot Projects; Railroads*/standards; Steel; Surface Properties; Workplace/standards

Back
to Top