Skip Navigation

Publication Detail

Title: Parent-of-origin effects on voluntary exercise levels and body composition in mice.

Authors: Kelly, Scott A; Nehrenberg, Derrick L; Hua, Kunjie; Gordon, Ryan R; Garland Jr, Theodore; Pomp, Daniel

Published In Physiol Genomics, (2010 Jan 8)

Abstract: Despite the health-related benefits of exercise, many people do not engage in enough activity to realize the rewards, and little is known regarding the genetic or environmental components that account for this individual variation. We created and phenotyped a large G(4) advanced intercross line originating from reciprocal crosses between mice with genetic propensity for increased voluntary exercise (HR line) and the inbred strain C57BL/6J. G(4) females (compared to males) ran significantly more when provided access to a running wheel and were smaller with a greater percentage of body fat pre- and postwheel access. Change in body composition resulting from a 6-day exposure to wheels varied between the sexes with females generally regulating energy balance more precisely in the presence of exercise. We observed parent-of-origin effects on most voluntary wheel running and body composition traits, which accounted for 3-13% of the total phenotypic variance pooled across sexes. G(4) individuals descended from progenitor (F(0)) crosses of HRfemale symbol and C57BL/6Jmale symbol ran greater distances, spent more time running, ran at higher maximum speeds/day, and had lower percent body fat and higher percent lean mass than mice descended from reciprocal progenitor crosses (C57BL/6Jfemale symbol x HRmale symbol). For some traits, significant interactions between parent of origin and sex were observed. We discuss these results in the context of sex dependent activity and weight loss patterns, the contribution of parent-of-origin effects to predisposition for voluntary exercise, and the genetic (i.e., X-linked or mtDNA variations), epigenetic (i.e., genomic imprinting), and environmental (i.e., in utero environment or maternal care) phenomena potentially modulating these effects.

PubMed ID: 19903762 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top