Skip Navigation

Publication Detail

Title: PLUNC is a novel airway surfactant protein with anti-biofilm activity.

Authors: Gakhar, Lokesh; Bartlett, Jennifer A; Penterman, Jon; Mizrachi, Dario; Singh, Pradeep K; Mallampalli, Rama K; Ramaswamy, S; McCray Jr, Paul B

Published In PLoS One, (2010 Feb 09)

Abstract: The PLUNC ("Palate, lung, nasal epithelium clone") protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family--the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP)--are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.

PubMed ID: 20161732 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top