Skip Navigation

Publication Detail

Title: Iron-Functionalized Membranes for Nanoparticle Synthesis and Reactions.

Authors: Lewis, Scott; Smuleac, Vasile; Montague, Alex; Bachas, Leonidas; Bhattacharyya, Dibakar

Published In Sep Sci Technol, (2009 Jan 01)

Abstract: Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. More recent developments in membrane functionalization have made the use of membrane science important in diverse fields, from tunable separations to catalysis. The focus of this work is to create a common membrane platform for the incorporation of technologies capable of degrading target pollutants. Functionalized membranes capable of metal capture were created using water-based and solvent-based acrylic acid polymerization to synthesize poly (acrylic acid) (PAA) within poly(vinylidene fluoride) (PVDF) membrane pores. The COO(-) groups of PAA were used to capture Fe(II), which was then either reduced and doped with Pd to form Fe/Pd nanoparticles or used as-is for free radical generation with hydrogen peroxide. Fe/Pd nanoparticles were synthesized within the pores of a PAA/PVDF membrane functionalized via aqueous (green) chemistry and used to dechlorinate trichloroethylene (TCE) and 2,2'-dichlorobiphenyl (DiCB). A PAA/PVDF membrane containing immobilized Fe(III) was used to obtain controlled free radical generation and target organic (pentachlorophenol) degradation within the membrane pore under convective flow conditions.

PubMed ID: 20556223 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top