Skip Navigation

Publication Detail

Title: Iron control of erythroid development by a novel aconitase-associated regulatory pathway.

Authors: Bullock, Grant C; Delehanty, Lorrie L; Talbot, Anne-Laure; Gonias, Sara L; Tong, Wing-Hang; Rouault, Tracey A; Dewar, Brian; Macdonald, Jeffrey M; Chruma, Jason J; Goldfarb, Adam N

Published In Blood, (2010 Jul 08)

Abstract: Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.

PubMed ID: 20407036 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top