Skip Navigation

Publication Detail

Title: 1,3-Dinitrobenzene-induced metabolic impairment through selective inactivation of the pyruvate dehydrogenase complex.

Authors: Miller, James A; Runkle, Stephanie A; Tjalkens, Ronald B; Philbert, Martin A

Published In Toxicol Sci, (2011 Aug)

Abstract: Prolonged exposure to the chemical intermediate, 1,3-dinitrobenzene (1,3-DNB), produces neuropathology in the central nervous system of rodents analogous to that observed in various conditions of acute energy deprivation including thiamine deficiency and Leigh's necrotizing encephalopathy. Increased production of reactive intermediates in addition to induction of oxidative stress has been implicated in the neurotoxic mechanism of 1,3-DNB, but a clear metabolic target has not been determined. Here we propose that similar to thiamine deficiency, the effects of 1,3-DNB on metabolic status may be due to inhibition of the thiamine-dependent α-ketoacid dehydrogenase complexes. The effects of 1,3-DNB on astroglial metabolic status and α-ketoacid dehydrogenase activity were evaluated using rat C6 glioma cells. Exposure to 1,3-DNB resulted in altered morphology and biochemical dysfunction consistent with disruption of oxidative energy metabolism. Cotreatment with acetyl-carnitine or acetoacetate attenuated morphological and metabolic effects of 1,3-DNB exposure as well as increased cell viability. 1,3-DNB exposure inhibited pyruvate dehydrogenase complex (PDHc) and the inhibition correlated with the loss of lipoic acid (LA) immunoreactivity, suggesting that modification of LA is a potential mechanism of inhibition. Treatment with antioxidants and thiol-containing compounds failed to protect against loss of LA. Alternatively, inhibition of dihydrolipoamide dehydrogenase, the E3 component of the complex attenuated loss of LA. Collectively, these data suggest that 1,3-DNB impairs oxidative energy metabolism through direct inhibition of the PDHc and that this impairment is due to perturbations in the function of protein-bound LA.

PubMed ID: 21551353 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top