Skip Navigation

Publication Detail

Title: Olfactory ferric and ferrous iron absorption in iron-deficient rats.

Authors: Ruvin Kumara, V M; Wessling-Resnick, Marianne

Published In Am J Physiol Lung Cell Mol Physiol, (2012 Jun 15)

Abstract: The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood (59)Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of (59)Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade (b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1.

PubMed ID: 22492739 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top