Skip Navigation

Publication Detail

Title: CD40 ligand (CD154) involvement in platelet transfusion reactions.

Authors: Sahler, J; Spinelli, S; Phipps, R; Blumberg, N

Published In Transfus Clin Biol, (2012 Jun)

Abstract: Platelet transfusions are commonly used treatments that occasionally lead to adverse reactions. Clinical trials, in vitro and animal studies have been performed to try to understand the causes of such reactions. Multiple studies have shown that the supernatant fraction of platelet concentrates contain prothrombotic and pro-inflammatory mediators. The origin of these mediators was first ascribed to white blood cells contaminating the platelet preparation. However, the accumulation of bioactive mediators after leukoreduction focused attention on platelets themselves during storage. Numerous cytokines, chemokines and prostaglandins are released in stored platelet concentrates. We have focused on a powerful mediator called soluble CD40 ligand (sCD40L, formally known as CD154) as a seminal contributor to adverse reactions. sCD40L can bind and signal the surface receptor, CD40, which is present on various types of human cells including white blood cells, vascular cells and fibroblasts. Downstream results of sCD40L/CD40 signaling include pro-inflammatory cytokine and chemokine production, prothrombotic mediator release, adherence and transmigration of leukocytes to endothelium and other undesirable vascular inflammatory events. Increased plasma levels of sCD40L can be detected in conditions such as myocardial infarction, stroke, unstable angina, high cholesterol, or other cardiovascular conditions. In retrospective studies, correlations were made between increased sCD40L levels of platelet concentrates and adverse transfusion reactions. We hypothesize that transfusion of partially activated, CD40L-expressing platelets along with sCD40L into a recipient with damaged or dysfunctional vascular tissue results in a "double-hit", thus inciting inflammation and vascular damage in the recipient.

PubMed ID: 22703674 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top