Skip Navigation

Publication Detail

Title: Air pollution, inflammation and preterm birth in Mexico City: study design and methods.

Authors: O'Neill, Marie S; Osornio-Vargas, Alvaro; Buxton, Miatta A; Sánchez, Brisa N; Rojas-Bracho, Leonora; Castillo-Castrejon, Marisol; Mordhukovich, Irina B; Brown, Daniel G; Vadillo-Ortega, Felipe

Published In Sci Total Environ, (2013 Mar 15)

Abstract: Preterm birth is one of the leading causes of perinatal mortality and is associated with long-term adverse health consequences for surviving infants. Preterm birth rates are rising worldwide, and no effective means for prevention currently exists. Air pollution exposure may be a significant cause of prematurity, but many published studies lack the individual, clinical data needed to elucidate possible biological mechanisms mediating these epidemiological associations. This paper presents the design of a prospective study now underway to evaluate those mechanisms in a cohort of pregnant women residing in Mexico City. We address how air quality may act together with other factors to induce systemic inflammation and influence the duration of pregnancy. Data collection includes: biomarkers relevant to inflammation in cervico-vaginal exudate and peripheral blood, along with full clinical information, pro-inflammatory cytokine gene polymorphisms and air pollution data to evaluate spatial and temporal variability in air pollution exposure. Samples are collected on a monthly basis and participants are followed for the duration of pregnancy. The data will be used to evaluate whether ambient air pollution is associated with preterm birth, controlling for other risk factors. We will evaluate which time windows during pregnancy are most influential in the air pollution and preterm birth association. In addition, the epidemiological study will be complemented with a parallel toxicology invitro study, in which monocytic cells will be exposed to air particle samples to evaluate the expression of biomarkers of inflammation.

PubMed ID: 23177781 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top