Skip Navigation

Publication Detail

Title: Role of TNFR1 in the innate airway hyperresponsiveness of obese mice.

Authors: Zhu, Ming; Williams, Alison S; Chen, Lucas; Wurmbrand, Allison P; Williams, Erin S; Shore, Stephanie A

Published In J Appl Physiol (1985), (2012 Nov)

Abstract: The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe(fat) mice that were either sufficient or genetically deficient in TNFR1 (Cpe(fat) and Cpe(fat)/TNFR1(-/-) mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1(-/-) mice]. Compared with lean WT mice, Cpe(fat) mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe(fat)/TNFR1(-/-) than in Cpe(fat) mice. Compared with WT mice, Cpe(fat) mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice. Additional moieties including IL-13 were also elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice but not in Cpe(fat) vs. WT mice. IL-17A mRNA expression was greater in Cpe(fat)/TNFR1(-/-) vs. Cpe(fat) mice and in TNFR1(-/-) vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.

PubMed ID: 22984249 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top