Skip Navigation

Publication Detail

Title: SyM-BBB: a microfluidic Blood Brain Barrier model.

Authors: Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Nichols, Joseph B; Mills, Ivy R; Sidoryk-Wegrzynowicz, Marta; Aschner, Michael; Pant, Kapil

Published In Lab Chip, (2013 Mar 21)

Abstract: Current techniques for mimicking the Blood-Brain Barrier (BBB) largely use incubation chambers (Transwell) separated with a filter and matrix coating to represent and to study barrier permeability. These devices have several critical shortcomings: (a) they do not reproduce critical microenvironmental parameters, primarily anatomical size or hemodynamic shear stress, (b) they often do not provide real-time visualization capability, and (c) they require a large amount of consumables. To overcome these limitations, we have developed a microfluidics based Synthetic Microvasculature model of the Blood-Brain Barrier (SyM-BBB). The SyM-BBB platform is comprised of a plastic, disposable and optically clear microfluidic chip with a microcirculation sized two-compartment chamber. The chamber is designed in such a way as to permit the realization of side-by-side apical and basolateral compartments, thereby simplifying fabrication and facilitating integration with standard instrumentation. The individually addressable apical side is seeded with endothelial cells and the basolateral side can support neuronal cells or conditioned media. In the present study, an immortalized Rat Brain Endothelial cell line (RBE4) was cultured in SyM-BBB with a perfusate of Astrocyte Conditioned Media (ACM). Biochemical analysis showed upregulation of tight junction molecules while permeation studies showed an intact BBB. Finally, transporter assay was successfully demonstrated in SyM-BBB indicating a functional model.

PubMed ID: 23344641 Exiting the NIEHS site

MeSH Terms: ATP-Binding Cassette, Sub-Family B, Member 1/metabolism; Animals; Blood-Brain Barrier/metabolism*; Cell Line; Cell Tracking; Culture Media, Conditioned/chemistry; Dextrans/chemistry; Microfluidic Analytical Techniques/instrumentation; Microfluidic Analytical Techniques/methods*; Models, Biological; Permeability; Rats; Rhodamine 123/chemistry

Back
to Top