Skip Navigation

Publication Detail

Title: Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model.

Authors: Wei, Binnian; Isukapalli, Sastry S; Weisel, Clifford P

Published In J Expo Sci Environ Epidemiol, (2013 Jul)

Abstract: Assessment of potential health risks to flight attendants from exposure to pyrethroid insecticides, used for aircraft disinsection, is limited because of (a) lack of information on exposures to these insecticides, and (b) lack of tools for linking these exposures to biomarker data. We developed and evaluated a physiologically based pharmacokinetic (PBPK) model to assess the exposure of flight attendants to the pyrethroid insecticide permethrin attributable to aircraft disinsection. The permethrin PBPK model was developed by adapting previous models for pyrethroids, and was parameterized using currently available metabolic parameters for permethrin. The human permethrin model was first evaluated with data from published human studies. Then, it was used to estimate urinary metabolite concentrations of permethrin in flight attendants who worked in aircrafts, which underwent residual and pre-flight spray treatments. The human model was also applied to analyze the toxicokinetics following permethrin exposures attributable to other aircraft disinsection scenarios. Predicted levels of urinary 3-phenoxybenzoic acid (3-PBA), a metabolite of permethrin, following residual disinsection treatment were comparable to the measurements made for flight attendants. Simulations showed that the median contributions of the dermal, oral and inhalation routes to permethrin exposure in flight attendants were 83.5%, 16.1% and 0.4% under residual treatment scenario, respectively, and were 5.3%, 5.0% and 89.7% under pre-flight spray scenario, respectively. The PBPK model provides the capability to simulate the toxicokinetic profiles of permethrin, and can be used in the studies on human exposure to permethrin.

PubMed ID: 23462847 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top