Skip Navigation

Publication Detail

Title: PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling.

Authors: Petriello, Michael C; Han, Sung Gu; Newsome, Bradley J; Hennig, Bernhard

Published In Toxicol Appl Pharmacol, (2014 Jun 01)

Abstract: Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1-/- mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1-/- endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1-/- endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation.

PubMed ID: 24709675 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top