Skip Navigation

Publication Detail

Title: Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches.

Authors: Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J

Published In Sci Total Environ, (2014 Nov 01)

Abstract: Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

PubMed ID: 25150738 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top