Skip Navigation

Publication Detail

Title: The effects of building-related factors on classroom relative humidity among North Carolina schools participating in the 'Free to Breathe, Free to Teach' study.

Authors: Angelon-Gaetz, K A; Richardson, D B; Lipton, D M; Marshall, S W; Lamb, B; LoFrese, T

Published In Indoor Air, (2015 Dec)

Abstract: Both high and low indoor relative humidity (RH) directly impact Indoor Air Quality (IAQ), an important school health concern. Prior school studies reported a high prevalence of mold, roaches, and water damage; however, few examined associations between modifiable classroom factors and RH, a quantitative indicator of dampness. We recorded RH longitudinally in 134 North Carolina classrooms (n = 9066 classroom-days) to quantify the relationships between modifiable classroom factors and average daily RH below, within, or above levels recommended to improve school IAQ (30-50% or 30-60% RH). The odds of having high RH (>60%) were 5.8 [95% Confidence Interval (CI): 2.9, 11.3] times higher in classrooms with annual compared to quarterly heating, ventilating, and air-conditioning (HVAC) system maintenance and 2.5 (95% CI: 1.5, 4.2) times higher in classrooms with HVAC economizers compared to those without economizers. Classrooms with direct-expansion split systems compared to chilled water systems had 2.7 (95% CI: 1.7, 4.4) times higher odds of low RH (<30%). When unoccupied, classrooms with thermostat setbacks had 3.7 (95% CI: 1.7, 8.3) times the odds of high RH (>60%) of those without setbacks. This research suggests actionable decision points for school design and maintenance to prevent high or low classroom RH.This study combines longitudinal measurements of classroom relative humidity with school inspection data from several schools to describe the problem of relative humidity control in schools. Our findings on how maintenance and mechanical factors affect classroom humidity provide suggestions on building operations policies and heating, ventilating, and air-conditioning (HVAC) design considerations that may improve classroom relative humidity control.

PubMed ID: 25515546 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top