Skip Navigation

Publication Detail

Title: Effect of inhaled endotoxin on mucociliary clearance and airway inflammation in mild smokers and nonsmokers.

Authors: Bennett, William D; Alexis, Neil E; Almond, Martha; Herbst, Margaret; Zeman, Kirby L; Peden, David B

Published In J Aerosol Med Pulm Drug Deliv, (2014 Dec)

Abstract: In healthy nonsmokers, inhaled endotoxin [lipopolysaccharide (LPS)] challenge induces airway neutrophilia and modifies innate immune responses, but the effect on mucociliary clearance (MCC), a key host defense response, is unknown. Although smokers are chronically exposed to LPS through inhaled tobacco smoke, the acute effect of inhaled LPS on both MCC and airway inflammation is also unknown. The purpose of this study was to determine the effect of inhaled LPS on MCC in nonsmokers and mild smokers with normal pulmonary function.We performed an open-label inhalational challenge with 20,000 endotoxin units in healthy adult nonsmokers (n=18) and young adult, mild smokers (n=12). At 4 hr post LPS challenge, we measured MCC over a period of 2 hr, followed by sputum induction to assess markers of airway inflammation.No significant changes in spirometry occurred in either group following LPS challenge. Following LPS, MCC was significantly (p<0.05) slowed in nonsmokers, but not in smokers [MCC=10±9% (challenge) vs. 15±8% (baseline), MCC=14±9% (challenge) vs. 16±10% (baseline), respectively]. Both groups showed a significant (p<0.05) increase in sputum neutrophils 6 hr post LPS challenge versus baseline. Although there was no correlation between the increased neutrophilia and depressed MCC post LPS in the nonsmokers, baseline neutrophil concentration predicted the LPS-induced decrease in MCC in the nonsmokers, i.e., lower baseline neutrophil concentration was associated with greater depression in MCC with LPS challenge (p<0.05).These data show that a mild exposure to endotoxin acutely slows MCC in healthy nonsmokers. MCC in mild smokers is unaffected by mild endotoxin challenge, likely due to preexisting effects of cigarette smoke on their airway epithelium.

PubMed ID: 24568613 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top