Skip Navigation

Publication Detail

Title: Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy.

Authors: Pyrgiotakis, Georgios; Blattmann, Christoph O; Demokritou, Philip

Published In ACS Sustain Chem Eng, (2014 Jul 07)

Abstract: Particle-cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP-cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent.

PubMed ID: 25068097 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top