Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA.

Authors: Price, Nathan E; Catalano, Michael J; Liu, Shuo; Wang, Yinsheng; Gates, Kent S

Published In Nucleic Acids Res, (2015 Apr 20)

Abstract: A new type of interstrand DNA-DNA cross-link between abasic (Ap) sites and 2'-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N(6)-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6: matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6: and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes.

PubMed ID: 25779045 Exiting the NIEHS site

MeSH Terms: Adenine/chemistry*; Chromatography, High Pressure Liquid; DNA/chemistry*; Nuclear Magnetic Resonance, Biomolecular; Nucleic Acid Conformation*; Tandem Mass Spectrometry

to Top