Skip Navigation

Publication Detail

Title: Influence of estrogen and xenoestrogens on basolateral uptake of tetraethylammonium by opossum kidney cells in culture.

Authors: Pelis, Ryan M; Hartman, Randall C; Wright, Stephen H; Wunz, Theresa M; Groves, Carlotta E

Published In J Pharmacol Exp Ther, (2007 Nov)

Abstract: The sex steroid hormone estrogen down-regulates renal organic cation (OC) transport in animals, and it may contribute to sex-related differences in xenobiotic accumulation and excretion. Also, the presence of various endocrine-disrupting chemicals, i.e., environmental chemicals that possess estrogenic activity (e.g., xenoestrogens) may down-regulate various transporters involved in renal accumulation and excretion of xenobiotics. The present study characterizes the mechanism by which long-term (6-day) incubation with physiological concentrations of 17beta-estradiol (E(2)) or the xenoestrogens diethylstilbestrol (DES) and bisphenol A (BPA) regulates the basolateral membrane transport of the OC tetraethylammonium (TEA) in opossum kidney (OK) cell renal cultures. Both 17beta-E(2) and the xenoestrogen DES produced a dose- and time-dependent inhibition of basolateral TEA uptake in OK cell cultures, whereas the weakly estrogenic BPA had no effect on TEA uptake. Treatment for 6 days with either 1 nM 17beta-E(2) or DES reduced TEA uptake by approximately 30 and 40%, respectively. These effects were blocked completely by the estrogen receptor antagonist ICI 182780 (Faslodex, fulvestrant), suggesting that these estrogens regulate OC transport through the estrogen receptor, which was detected (estrogen receptor alpha) in OK cell cultures by reverse transcription-polymerase chain reaction. The J(max) value for TEA uptake in 17beta-E(2)- and DES-treated OK cell cultures was approximately 40 to 50% lower than for ethanol-treated cultures, whereas K(t) was unaffected. This reduction in transport capacity was correlated with a reduction in OC transporter OCT1 protein expression following treatment with both agents.

PubMed ID: 17684116 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top