Skip Navigation

Publication Detail

Title: Mir-203-mediated tricellulin mediates lead-induced in vitro loss of blood-cerebrospinal fluid barrier (BCB) function.

Authors: Su, Peng; Zhao, Fang; Cao, Zipeng; Zhang, Jianbin; Aschner, Michael; Luo, Wenjing

Published In Toxicol In Vitro, (2015 Aug)

Abstract: The blood-cerebrospinal fluid barrier (BCB) plays a critical role in the maintenance of optimal brain function. Tricellulin (TRIC), a protein localized at the tricellular contact sites of epithelial cells is involved in the formation of tight junctions in various epithelial barriers. However, little is known about its expression in the choroidal epithelial cells. It is well established that lead (Pb) exposure increases the leakage of the BCB. The purpose of this study is to investigate the expression and localization of TRIC in choroidal epithelial cells in vitro and whether altered TRIC expression mediates Pb-induced loss of barrier function. We found that TRIC protein and mRNA were expressed in choroidal epithelial cells in vitro and TRIC was localized at the tricellular contacts, colocalizing with occludin. Downregulation of TRIC by siRNA increased the BCB permeability corroborated by altered transendothelial electrical resistance (TEER) and FITC-dextran flux. Treatment with 10μM Pb reduced TRIC protein expression, but overexpression of TRIC alleviated the Pb-induced increase in BCB permeability. Bioinformatics analysis showed that mir-203 was a potential microRNA (miRNA) binding motif on TRIC 3'UTR, and that Pb exposure increased the expression of mir-203. Treatment with a mir-203 inhibitor increased TRIC protein expression and attenuated the Pb-induced BCB leakage. Our results establish that TRIC plays an important role in regulating BCB function.

PubMed ID: 25975750 Exiting the NIEHS site

MeSH Terms: Animals; Blood; Cell Line; Cerebrospinal Fluid; Choroid Plexus/cytology; Choroid Plexus/metabolism*; Epithelial Cells/metabolism*; Lead/toxicity*; MARVEL Domain Containing 2 Protein/genetics; MARVEL Domain Containing 2 Protein/metabolism*; MicroRNAs/metabolism*; Rats

Back
to Top
Last Reviewed: October 02, 2024