Skip Navigation

Publication Detail

Title: Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations.

Authors: Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A; Bellinger, David C; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Wright, Rosalind J

Published In Environ Int, (2016 Feb)

Abstract: Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex.We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter ≤ 2.5 μm (PM2.5) and children's neurodevelopment.We assessed 267 full-term urban children's prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners' CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined.Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31-38 weeks with lower IQ, at 20-26 weeks gestation with increased OEs, at 32-36 weeks with slower HRT, and at 22-40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18-26 weeks with reduced VIM, at 12-20 weeks with reduced GM).Increased PM2.5 exposure in specific prenatal windows may be associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups.

PubMed ID: 26641520 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top