Skip Navigation

Publication Detail

Title: Particulate accumulations in the vital organs of wild Brevoortia patronus from the northern Gulf of Mexico after the Deepwater Horizon oil spill.

Authors: Millemann, Daniel R; Portier, Ralph J; Olson, Gregory; Bentivegna, Carolyn S; Cooper, Keith R

Published In Ecotoxicology, (2015 Nov)

Abstract: Histopathologic lesions were observed in the commercially important filter-feeding fish, Brevoortia patronus (Gulf menhaden), along the Louisiana Gulf Coast. Menhaden collected from Louisiana waters in 2011 and 2012, 1 and 2 years following the Deepwater Horizon oil spill, showed varying severities of gill lesions as well as an unusual accumulation of black particulates visible at necropsy in the heart and stomach vasculature. The PAH derived particulates were typically 1-4 µm in diameter, but larger aggregates were observed in the coronary vessels on the ventricle surfaces and their location and size was confirmed by light microscopy. Composited particulate composition was consistent with weathered petrogenic polycyclic aromatic hydrocarbon (PAH) mixtures based on GC-MS analysis. Particulates were present in 63 and 80% of fish hearts and 70 and 89% of stomach muscularis collected in 2011 and 2012, respectively. Tissue embedded particulates can lead to localized cellular damage from bioavailable compounds, as well as chronic effects from occlusion of sensitive tissues' blood flow. The PAH derived particulates appeared to act as emboli in small capillaries, and could associated with localized inflammation, focal necrosis and inappropriate collagen and fibroblast tissue repair. We believe large volume filter feeding teleosts, such as menhaden (up to 3 million gallons per year/fish) with high lipid content, have a higher exposure risk and greater potential for toxicity from toxic particulates than other higher trophic level finfish. Suspended PAH derived particulates following an oil spill therefore, should be considered when assessing long-term ecological impacts and not be limited to physical contact (coating) or water soluble fractions for assessing toxicity (gill and neurologic).

PubMed ID: 26209168 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top