Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Detecting gene-gene interactions using a permutation-based random forest method.

Authors: Li, Jing; Malley, James D; Andrew, Angeline S; Karagas, Margaret R; Moore, Jason H

Published In BioData Min, (2016)

Abstract: Identifying gene-gene interactions is essential to understand disease susceptibility and to detect genetic architectures underlying complex diseases. Here, we aimed at developing a permutation-based methodology relying on a machine learning method, random forest (RF), to detect gene-gene interactions. Our approach called permuted random forest (pRF) which identified the top interacting single nucleotide polymorphism (SNP) pairs by estimating how much the power of a random forest classification model is influenced by removing pairwise interactions.We systematically tested our approach on a simulation study with datasets possessing various genetic constraints including heritability, number of SNPs, sample size, etc. Our methodology showed high success rates for detecting the interaction SNP pair. We also applied our approach to two bladder cancer datasets, which showed consistent results with well-studied methodologies, such as multifactor dimensionality reduction (MDR) and statistical epistasis network (SEN). Furthermore, we built permuted random forest networks (PRFN), in which we used nodes to represent SNPs and edges to indicate interactions.We successfully developed a scale-invariant methodology to detect pure gene-gene interactions based on permutation strategies and the machine learning method random forest. This methodology showed great potential to be used for detecting gene-gene interactions to study underlying genetic architectures in a scale-free way, which could be benefit to uncover the complex disease mechanisms.

PubMed ID: 27053949 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top