Title: Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China.
Authors: Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia
Published In Environ Sci Pollut Res Int, (2016 Sep)
Abstract: Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.
PubMed ID: 27230155
MeSH Terms: Air Pollutants/analysis*; China; Dust/analysis*; Metals, Heavy/analysis*; Recycling; Risk Assessment; Soil Pollutants/analysis*; Soil/chemistry*