Skip Navigation

Publication Detail

Title: Sex and the developing brain: suppression of neuronal estrogen sensitivity by developmental androgen exposure.

Authors: MacLusky, N J; Bowlby, D A; Brown, T J; Peterson, R E; Hochberg, R B

Published In Neurochem Res, (1997 Nov)

Abstract: The developmental effects of androgen play a central role in sexual differentiation of the mammalian central nervous system. The cellular mechanisms responsible for mediating these effects remain incompletely understood. A considerable amount of evidence has accumulated indicating that one of the earliest detectable events in the mechanism of sexual differentiation is a selective and permanent reduction in estrogen receptor concentrations in specific regions of the brain. Using quantitative autoradiographic methods, it has been possible to precisely map the regional distribution of estrogen receptors in the brains of male and female rats, as well as to study the development of sexual dimorphisms in receptor distribution. Despite previous data suggesting that the left and right sides of the brain may be differentially responsive to early androgen exposure, there is no significant right-left asymmetry in estrogen receptor distribution, in either sex. Significant sex differences in receptor density are, however, observed in several regions of the preoptic area, the bed nucleus of the stria terminalis and the ventromedial nucleus of the hypothalamus, particularly in its most rostral and caudal aspects. In the periventricular preoptic area of the female, highest estrogen receptor density occurs in the anteroventral periventricular region: binding in this region is reduced by approximately 50% in the male, as compared to the female. These data are consistent with the hypothesis that androgen-induced defeminization of feminine behavioral and neuroendocrine responses to estrogen may involve selective reductions in the estrogen sensitivity of critical components of the neural circuitry regulating these responses, mediated in part through a reduction in estrogen receptor biosynthesis.

PubMed ID: 9355112 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top