Skip Navigation

Publication Detail

Title: Cellular Repair of DNA-DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane.

Authors: Chesner, Lisa N; Degner, Amanda; Sangaraju, Dewakar; Yomtoubian, Shira; Wickramaratne, Susith; Malayappan, Bhaskar; Tretyakova, Natalia; Campbell, Colin

Published In Int J Mol Sci, (2017 May 18)

Abstract: Xenobiotic-induced interstrand DNA-DNA cross-links (ICL) interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) cross-links induced by 1,2,3,4-diepoxybutane (DEB). High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI⁺-MS/MS) assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79) and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.

PubMed ID: 28524082 Exiting the NIEHS site

MeSH Terms: Animals; Cell Line; Cricetinae; DNA Breaks, Double-Stranded/drug effects; DNA Repair/drug effects; DNA Repair/genetics*; Epoxy Compounds/pharmacology*; Fanconi Anemia Complementation Group D2 Protein/genetics; Fanconi Anemia/genetics; Xeroderma Pigmentosum Group A Protein/genetics

to Top