Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria.

Authors: Guo, Zhijun; Sevrioukova, Irina F; Denisov, Ilia G; Zhang, Xia; Chiu, Ting-Lan; Thomas, Dafydd G; Hanse, Eric A; Cuellar, Rebecca A D; Grinkova, Yelena V; Langenfeld, Vanessa Wankhede; Swedien, Daniel S; Stamschror, Justin D; Alvarez, Juan; Luna, Fernando; Galván, Adela; Bae, Young Kyung; Wulfkuhle, Julia D; Gallagher, Rosa I; Petricoin Rd, Emanuel F; Norris, Beverly; Flory, Craig M; Schumacher, Robert J; O'Sullivan, M Gerard; Cao, Qing; Chu, Haitao; Lipscomb, John D; Atkins, William M; Gupta, Kalpna; Kelekar, Ameeta; Blair, Ian A; Capdevila, Jorge H; Falck, John R; Sligar, Stephen G; Poulos, Thomas L; Georg, Gunda I; Ambrose, Elizabeth; Potter, David A

Published In Cell Chem Biol, (2017 Oct 19)

Abstract: The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER+ mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.

PubMed ID: 28919040 Exiting the NIEHS site

MeSH Terms: AMP-Activated Protein Kinases/metabolism; Animals; Biguanides/chemistry; Biguanides/metabolism*; Biguanides/pharmacology*; Breast Neoplasms/pathology; Catalytic Domain; Cell Respiration/drug effects; Cytochrome P-450 CYP3A/chemistry; Cytochrome P-450 CYP3A/deficiency; Cytochrome P-450 CYP3A/genetics; Cytochrome P-450 CYP3A/metabolism*; Estrogen Receptor alpha/genetics; Female; Gene Expression Regulation, Neoplastic/drug effects; Gene Silencing; Heme/metabolism*; Humans; MCF-7 Cells; Membrane Potential, Mitochondrial/drug effects; Mice; Mitochondria/drug effects*; Mitochondria/metabolism; Mitochondria/pathology; Models, Molecular; Protein Transport/drug effects

to Top