Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh.

Authors: Pierce, Brandon L; Tong, Lin; Dean, Samantha; Argos, Maria; Jasmine, Farzana; Rakibuz-Zaman, Muhammad; Sarwar, Golam; Islam, Md Tariqul; Shahriar, Hasan; Islam, Tariqul; Rahman, Mahfuzar; Yunus, Md; Lynch, Vincent J; Oglesbee, Devin; Graziano, Joseph H; Kibriya, Muhammad G; Gamble, Mary V; Ahsan, Habibul

Published In PLoS Genet, (2019 03)

Abstract: Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.

PubMed ID: 30893314 Exiting the NIEHS site

MeSH Terms: Adult; Alleles; Ammonia-Lyases/genetics*; Ammonia-Lyases/physiology; Arsenic Poisoning; Arsenic/metabolism; Arsenic/toxicity*; Bangladesh; Environmental Exposure; Female; Folic Acid/metabolism; Gene Frequency/genetics; Glutamate Formimidoyltransferase/genetics*; Glutamate Formimidoyltransferase/physiology; Humans; Male; Methylation; Methyltransferases/genetics*; Methyltransferases/metabolism; Multifunctional Enzymes; Mutation, Missense; Odds Ratio; Phenotype; Polymorphism, Single Nucleotide/genetics; Risk Factors; Skin Diseases/chemically induced; Skin Diseases/genetics; Water Pollutants, Chemical

to Top