Skip Navigation

Publication Detail

Title: Genome-Wide Transcriptional Analysis Reveals Novel AhR Targets That Regulate Dendritic Cell Function during Influenza A Virus Infection.

Authors: Franchini, Anthony M; Myers, Jason R; Jin, Guang-Bi; Shepherd, David M; Lawrence, B Paige

Published In Immunohorizons, (2019 06 17)

Abstract: Activation of the ligand inducible aryl hydrocarbon receptor (AhR) during primary influenza A virus infection diminishes host responses by negatively regulating the ability of dendritic cells (DC) to prime naive CD8+ T cells, which reduces the generation of CTL. However, AhR-regulated genes and signaling pathways in DCs are not fully known. In this study, we used unbiased gene expression profiling to identify differentially expressed genes and signaling pathways in DCs that are modulated by AhR activation in vivo. Using the prototype AhR agonist TCDD, we identified the lectin receptor Cd209a (DC-SIGN) and chemokine Ccl17 as novel AhR target genes. We further show the percentage of DCs expressing CD209a on their surface was significantly decreased by AhR activation during infection. Whereas influenza A virus infection increased CCL17 protein levels in the lung and lung-draining lymph nodes, this was significantly reduced following AhR activation. Targeted excision of AhR in the hematopoietic compartment confirmed AhR is required for downregulation of CCL17 and CD209a. Loss of AhR's functional DNA-binding domain demonstrates that AhR activation alone is necessary but not sufficient to drive downregulation. AhR activation induced similar changes in gene expression in human monocyte-derived DCs. Analysis of the murine and human upstream regulatory regions of Cd209a and Ccl17 revealed a suite of potential transcription factor partners for AhR, which may coregulate these genes in vivo. This study highlights the breadth of AhR-regulated pathways within DCs, and that AhR likely interacts with other transcription factors to modulate DC functions during infection.

PubMed ID: 31356168 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top