Skip Navigation

Publication Detail

Title: Valproate uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: relevance to valproate's efficacy against bipolar disorder.

Authors: Shimshoni, Jakob A; Basselin, Mireille; Li, Lei O; Coleman, Rosalind A; Rapoport, Stanley I; Modi, Hiren R

Published In Biochim Biophys Acta, (2011 Mar)

Abstract: The ability of chronic valproate (VPA) to reduce arachidonic acid (AA) turnover in brain phospholipids of unanesthetized rats has been ascribed to its inhibition of acyl-CoA synthetase (Acsl)-mediated activation of AA to AA-CoA. Our aim was to identify a rat Acsl isoenzyme that could be inhibited by VPA in vitro.Rat Acsl3-, Acsl6v1- and Acsl6v2-, and Acsl4-flag proteins were expressed in E. coli, and the ability of VPA to inhibit their activation of long-chain fatty acids to acyl-CoA was estimated using Michaelis-Menten kinetics.VPA uncompetitively inhibited Acsl4-mediated conversion of AA and of docosahexaenoic (DHA) but not of palmitic acid to acyl-CoA, but did not affect AA conversion by Acsl3, Acsl6v1 or Acsl6v2. Acsl4-mediated conversion of AA to AA-CoA showed substrate inhibition and had a 10-times higher catalytic efficiency than did conversion of DHA to DHA-CoA. Butyrate, octanoate, or lithium did not inhibit AA activation by Acsl4.VPA's ability to inhibit Acsl4 activation of AA and of DHA to their respective acyl-CoAs, when related to the higher catalytic efficiency of AA than DHA conversion, may account for VPA's selective reduction of AA turnover in rat brain phospholipids, and contribute to VPA's efficacy against bipolar disorder.

PubMed ID: 21184843 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top