Skip Navigation

Publication Detail

Title: The loss of ERE-dependent ERα signaling potentiates the effects of maternal high-fat diet on energy homeostasis in female offspring fed an obesogenic diet.

Authors: Roepke, Troy A; Yasrebi, Ali; Villalobos, Alejandra; Krumm, Elizabeth A; Yang, Jennifer A; Mamounis, Kyle J

Published In J Dev Orig Health Dis, (2020 06)

Abstract: Maternal high-fat diet (HFD) alters hypothalamic programming and disrupts offspring energy homeostasis in rodents. We previously reported that the loss of ERα signaling partially blocks the effects of maternal HFD in female offspring fed a standard chow diet. In a companion study, we determined if the effects of maternal HFD were magnified by an adult obesogenic diet in our transgenic mouse models. Heterozygous ERα knockout (wild-type (WT)/KO) dams were fed a control breeder chow diet (25% fat) or a semipurified HFD (45% fat) 4 weeks prior to mating with heterozygous males (WT/KO or WT/ knockin) to produce WT, ERα KO, or ERα knockin/knockout (KIKO) (no estrogen response element (ERE) binding) female offspring, which were fed HFD for 20 weeks. Maternal HFD potentiated the effects of adult HFD on KIKO and KO body weight due to increased adiposity and decreased activity. Maternal HFD also produced KIKO females that exhibit KO-like insulin intolerance and impaired glucose homeostasis. Maternal HFD increased plasma interleukin 6 and monocyte chemoattractant protein 1 levels and G6pc and Pepck liver expression only in WT mice. Insulin and tumor necrosis factor α levels were higher in KO offspring from HFD-fed dams. Arcuate and liver expression of Esr1 was altered in KIKO and WT, respectively. These data suggest that loss of ERE-dependent ERα signaling, and not total ERα signaling, sensitizes females to the deleterious influence of maternal HFD on offspring energy and glucose potentially through the control of peripheral inflammation and hypothalamic and liver gene expression. Future studies will interrogate the tissue-specific mechanisms of maternal HFD programming through ERα signaling.

PubMed ID: 31543088 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top